Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
mSystems ; 7(4): e0010922, 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-1891744

ABSTRACT

A promising approach to help students safely return to in person learning is through the application of sentinel cards for accurate high resolution environmental monitoring of SARS-CoV-2 traces indoors. Because SARS-CoV-2 RNA can persist for up to a week on several indoor surface materials, there is a need for increased temporal resolution to determine whether consecutive surface positives arise from new infection events or continue to report past events. Cleaning sentinel cards after sampling would provide the needed resolution but might interfere with assay performance. We tested the effect of three cleaning solutions (BZK wipes, Wet Wipes, RNase Away) at three different viral loads: "high" (4 × 104 GE/mL), "medium" (1 × 104 GE/mL), and "low" (2.5 × 103 GE/mL). RNase Away, chosen as a positive control, was the most effective cleaning solution on all three viral loads. Wet Wipes were found to be more effective than BZK wipes in the medium viral load condition. The low viral load condition was easily reset with all three cleaning solutions. These findings will enable temporal SARS-CoV-2 monitoring in indoor environments where transmission risk of the virus is high and the need to avoid individual-level sampling for privacy or compliance reasons exists. IMPORTANCE Because SARS-CoV-2, the virus that causes COVID-19, persists on surfaces, testing swabs taken from surfaces is useful as a monitoring tool. This approach is especially valuable in school settings, where there are cost and privacy concerns that are eliminated by taking a single sample from a classroom. However, the virus persists for days to weeks on surface samples, so it is impossible to tell whether positive detection events on consecutive days are a persistent signal or new infectious cases and therefore whether the positive individuals have been successfully removed from the classroom. We compare several methods for cleaning "sentinel cards" to show that this approach can be used to identify new SARS-CoV-2 signals day to day. The results are important for determining how to monitor classrooms and other indoor environments for SARS-CoV-2 virus.

2.
mSystems ; 7(4): e0010322, 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-1891743

ABSTRACT

Surface sampling for SARS-CoV-2 RNA detection has shown considerable promise to detect exposure of built environments to infected individuals shedding virus who would not otherwise be detected. Here, we compare two popular sampling media (VTM and SDS) and two popular workflows (Thermo and PerkinElmer) for implementation of a surface sampling program suitable for environmental monitoring in public schools. We find that the SDS/Thermo pipeline shows superior sensitivity and specificity, but that the VTM/PerkinElmer pipeline is still sufficient to support surface surveillance in any indoor setting with stable cohorts of occupants (e.g., schools, prisons, group homes, etc.) and may be used to leverage existing investments in infrastructure. IMPORTANCE The ongoing COVID-19 pandemic has claimed the lives of over 5 million people worldwide. Due to high density occupancy of indoor spaces for prolonged periods of time, schools are often of concern for transmission, leading to widespread school closings to combat pandemic spread when cases rise. Since pediatric clinical testing is expensive and difficult from a consent perspective, we have deployed surface sampling in SASEA (Safer at School Early Alert), which allows for detection of SARS-CoV-2 from surfaces within a classroom. In this previous work, we developed a high-throughput method which requires robotic automation and specific reagents that are often not available for public health laboratories such as the San Diego County Public Health Laboratory (SDPHL). Therefore, we benchmarked our method (Thermo pipeline) against SDPHL's (PerkinElmer) more widely used method for the detection and prediction of SARS-CoV-2 exposure. While our method shows superior sensitivity (false-negative rate of 9% versus 27% for SDPHL), the SDPHL pipeline is sufficient to support surface surveillance in indoor settings. These findings are important since they show that existing investments in infrastructure can be leveraged to slow the spread of SARS-CoV-2 not in just the classroom but also in prisons, nursing homes, and other high-risk, indoor settings.

3.
mSystems ; 7(3): e0141121, 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1846330

ABSTRACT

Monitoring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on surfaces is emerging as an important tool for identifying past exposure to individuals shedding viral RNA. Our past work demonstrated that SARS-CoV-2 reverse transcription-quantitative PCR (RT-qPCR) signals from surfaces can identify when infected individuals have touched surfaces and when they have been present in hospital rooms or schools. However, the sensitivity and specificity of surface sampling as a method for detecting the presence of a SARS-CoV-2 positive individual, as well as guidance about where to sample, has not been established. To address these questions and to test whether our past observations linking SARS-CoV-2 abundance to Rothia sp. in hospitals also hold in a residential setting, we performed a detailed spatial sampling of three isolation housing units, assessing each sample for SARS-CoV-2 abundance by RT-qPCR, linking the results to 16S rRNA gene amplicon sequences (to assess the bacterial community at each location), and to the Cq value of the contemporaneous clinical test. Our results showed that the highest SARS-CoV-2 load in this setting is on touched surfaces, such as light switches and faucets, but a detectable signal was present in many untouched surfaces (e.g., floors) that may be more relevant in settings, such as schools where mask-wearing is enforced. As in past studies, the bacterial community predicts which samples are positive for SARS-CoV-2, with Rothia sp. showing a positive association. IMPORTANCE Surface sampling for detecting SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is increasingly being used to locate infected individuals. We tested which indoor surfaces had high versus low viral loads by collecting 381 samples from three residential units where infected individuals resided, and interpreted the results in terms of whether SARS-CoV-2 was likely transmitted directly (e.g., touching a light switch) or indirectly (e.g., by droplets or aerosols settling). We found the highest loads where the subject touched the surface directly, although enough virus was detected on indirectly contacted surfaces to make such locations useful for sampling (e.g., in schools, where students did not touch the light switches and also wore masks such that they had no opportunity to touch their face and then the object). We also documented links between the bacteria present in a sample and the SARS-CoV-2 virus, consistent with earlier studies.

4.
mSystems ; 5(6)2020 Oct 29.
Article in English | MEDLINE | ID: covidwho-894830

ABSTRACT

Due to the COVID-19 pandemic and potential public health implications, we are publishing this peer-reviewed manuscript in its accepted form. The final, copyedited version of the paper will be available at a later date. Although SARS-CoV-2 is primarily transmitted by respiratory droplets and aerosols, transmission by fomites remains plausible. During Halloween, a major event for children in numerous countries, SARS-CoV-2 transmission risk via candy fomites worries many parents. To address this concern, we enrolled 10 recently diagnosed asymptomatic or mildly/moderately symptomatic COVID-19 patients to handle typical Halloween candy (pieces individually wrapped) under three conditions: normal handling with unwashed hands, deliberate coughing and extensive touching, and normal handling following handwashing. We then used a factorial design to subject the candies to two post-handling treatments: no washing (untreated) and household dishwashing detergent. We measured SARS-CoV-2 load by RT-qPCR and LAMP. From the candies not washed post-handling, we detected SARS-CoV-2 on 60% of candies that were deliberately coughed on, 60% of candies normally handled with unwashed hands, but only 10% of candies handled after hand washing. We found that treating candy with dishwashing detergent reduced SARS-CoV-2 load by 62.1% in comparison to untreated candy. Taken together, these results suggest that although the risk of transmission of SARS-CoV-2 by fomites is low even from known COVID-19 patients, viral RNA load can be reduced to near zero by the combination of handwashing by the infected patient and ≥1 minute detergent treatment after collection. We also found that the inexpensive and fast LAMP protocol was more than 80% concordant with RT-qPCR.IMPORTANCE The COVID-19 pandemic is leading to important tradeoffs between risk of SARS-CoV-2 transmission and mental health due to deprivation from normal activities, with these impacts being especially profound in children. Due to the ongoing pandemic, Halloween activities will be curtailed as a result of the concern that candy from strangers might act as fomites. Here we demonstrate that these risks can be mitigated by ensuring that prior to handling candy, the candy giver washes their hands, and by washing collected candy with household dishwashing detergent. Even in the most extreme case, with candy deliberately coughed on by known COVID-19 patients, viral load was reduced dramatically after washing with household detergent. We conclude that with reasonable precautions, even if followed only by either the candy giver or the candy recipient, the risk of viral transmission by this route is very low.

SELECTION OF CITATIONS
SEARCH DETAIL